
Exploring Parallel Prefix Adders in Optimized
Squared Array Multiplier

Morgana Macedo†, Leandro Rocha∗, Guilherme Paim∗, Eduardo A. C. da Costa†
, Sergio Bampi∗

†Graduate Program on Electronic Engineering and Computing - Catholic University of Pelotas (UCPel), Pelotas, Brazil
∗Graduate Program on Microelectronics (PGMicro) - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Abstract—This work explores the use of Parallel Prefix adders
(PPA) in an optimized squared array multiplier. The optimized
squared multiplier was implemented so that only the required
sum trees are used. It is possible because in this type of circuit
some multiplications are duplicated, and thus some of them can
be discarded. Therefore, the use of PPA reduces still more the
complexity required by the sums of the partial product lines. All
the architectures of this work were described in Very High Speed
Integrated Circuits Hardware Description Language (VHDL), an
synthesized using the ST 65nm cell library. Results show that the
quadratic multiplier cells using the Kogge Stone adder save up to
3.5% in power dissipation and 9.4% in cell area when compared
to other 16-bit PPA-based multipliers.

Keywords—Squared multipliers, Parallel Prefix adders, VHDL.

I. INTRODUCTION

Multiplier circuits are useful in applications that use mul-
tiplication and accumulation (MAC) operations, as well as in
Digital Signal Processing (DSP) algorithms. On the other hand,
in some applications, such as logarithm [1] and exponential
[2] functions implemented in hardware, the use of a squared
multiplier is mandatory. Anyway, the multipliers are always the
main factor that contributes to the power consumption. One of
the reasons for this high power dissipation is the large number
of partial product lines, where the sums are realized in parallel.
In this work, we explore efficient parallel prefix adders (PPA)
in the adders trees of the squared multiplier, named Brent-
Kung [3], Kogge Stone [4], Han-Carlson [5], Ladner-Ficher
[6], and Skanskly [7].

Through a careful analysis, we were able to reduce the
complexity of the squared multiplier by using only the nec-
essary additions in the partial product lines. This is possible
because most of the multiplications operations use the same
inputs, and thus are only realized one time. Therefore, the
use of efficient PPAs in the partial product lines can become
the square multipliers still more efficient. Using these parallel
prefix adders to reduce the sum trees, it was possible to save
62.5% of the total logic used in the squared multiplier. The
rest of this paper is organized as follows: Section II give a
background on squared multipliers and Section III explains the
architecture of the parallel prefix adder overview. The synthesis
methodology and the experimental results are given in Section
IV, and finally, Section V concludes the paper.

II. SQUARED MULTIPLIER

Multiplication is a complex operation that can be per-
formed in two main ways: through dedicated logic circuits,
called multipliers, or by a sequence of sum and displacement
instructions [8]. The most basic form of multiplication consists
of forming the product of two unmarked binary numbers, this

can be done through the traditional technique taught in primary
school [9].

The quadratic arithmetic operation is a critical operation
in computer systems as it is used in image compression
algorithms, cryptography, digital signal processing, and so on.
This operation can be performed using a traditional multiplier,
but its hardware implementation can be optimized if a custom
circuit is built. As both operands are equal, we can avoid
the generation of many partial products, eliminating redundant
bits, resulting in a simpler circuit with less circuit area, smaller
critical path and reduced energy consumption.

Our work proposes an efficient algorithm to build custom
squared multipliers through the optimization of the logic
equations according to the literal reduction techniques. In the
squared multiplier, many multiplications repeat, as we have
two equal values that multiply, so many simplifications can be
made.

The logic reduction is justified as the multiplication has two
equal values, so, for example, the multiplication of A0.A0, it
can is simplified to A0. Another simplification occurs when
there is two terms A1.A0 to be summed, it is only necessary
to store the value of A1.A0 and, then, to perform a left-shift,
as shown in Fig. 1.

Fig. 1. Reduction of square multiplier logic

This technique of reducing the logic of the multiplier
squared was discovered through a lot of study, where we
realized that in the same way that we add 1 + 1 in binary
we have 10 (2 in decimal), so we would need to consider only
one bit and move it, of counter technique, because according
to the number of similar logics that we count will be the form
of the storage of the logic and the displacement.

The quadrature unit requires half of the partial products,
as we can combine using the equivalences (AiAj + AiAj =
2AiAj) which can be represented by the addition of (AiAj)
with a left shift.Reducing depth that can be defined as the
number of partial products to be added together in each
column.

In figure 2 we have a reduction of the logical depth and
also of the critical path, where we can observe that the two
terms A1A0 are reduced to only one term with a left shift,



Fig. 2. Reducing the critical path of the square multiplier

the property of A0A0 can be reduced to A0, since we have
a AND gate of equal values, so if both values are zero the
output is zero, and if both are one the output will be at logical
level one.

Our technique compared to general purpose multipliers
for the calculation of squared, reduces the number of logical
synthesis by 62.5%, that is, it reduces redundant logic.

III. PARALLEL PREFIX ADDERS OVERVIEW

The most basic circuit to perform the addition of two
operands is the Ripple Carry Adder (RCA). This adder is
composed by a cascade of full adder blocks. Although simple
structure forms the RCA, it does not present such a good
performance when compared with other structures shown in
the literature.

Various fast adder circuits have been proposed in the
literature to speed-up the carry calculation because this term
represents a bottleneck for the performance in an RCA struc-
ture. When high performance is demanded, Parallel Prefix
Adders (PPA) appear as the best choice [10]. They rely on the
use of simple cells and keeps a regular connection between
them. The prefix structures allow several tradeoffs between
i) the number of cells used, ii) the number of required logic
levels, and iii) the cells fan-out [10].

A parallel prefix circuit computes N outputs from N inputs
using an associative operator. Most prefix computation is pre-
computed from intermediate variables of the inputs. The prefix
network combines these intermediate variables to form the
prefixes. The outputs are post computed from the inputs and
the prefixes. In the parallel-prefix adders the sum is divided
into three main steps: i) Pre-computation: the intermediate
generate and propagate pairs (g, p) are composed by AND
and exclusive-OR; ii) Prefix: all the signs calculated in the
first step are processed by a prefix network, using a prefix cell
operator; iii) Post-computation: using the intermediate signals
propagate and the carry signals a sum result can be found
by using another exclusive-OR gate. Fig. 3 shows the way of
calculating the prefix.

An ideal prefix network will be composed of: i) log2(n)
stage of logic, ii) fan-out never exceeding two at each stage,
and iii) no more than one horizontal track of wire at each
stage. Many parallel-prefix networks have been described in
the literature to calculate the carry signals by taking into
account the mentioned characteristics.

The PPA have similarities between them because all of
them are divided into the same three steps. The difference

Fig. 3. Operator for the prefix calculation.

between them is the area, the number of computations and
the delay. The delay value is verified through logarithmic
functions, and thus these adders are also called logarithmic
delay adders. In the pre-processing stage, the carry signals
required for the composition of the signals that enable the sub-
sequent steps are calculated. In this part, propagate functions
are used, where carry propagation values are generated. The
carry propagation occurs when one of the two input signals
corresponds to bit 1, as shown in (equation 1).

Pi = Ai ⊕Bi (1)

In (1), A and B are the input signals composed of a logic
gate XOR. In this way, if a Full-Adder circuit is considered,
then Full-Adder cells are used to implement an RCA. An
identical structure is presented to implement a PPA adder,
where the sum values are exposed to capture the Carry value
that will need to be generated for the next cell. Therefore, we
can understand the propagation and generation carry functions.
The carry generation function is given in (equation 2).

Gi = Ai ·Bi (2)

In (equation 2), A and B are the input signals composed
of a logic gate AND that only allows the carry generation
when the two input values have a logical level 1. When the
carry propagation and carry generation equations are analyzed,
it is noticed that they generate input vectors according to the
need of bits necessary for their application. But since these
equations are performed in parallel, they do not add up a
considerable computing delay, and the area cost reaches the
bit size needed at the input.

In the stage of prefix computation, the carries are grouped
according to the adders configuration regarding lower cost,
power, and delay. According to the adders configuration, the
prefix computation groups both values directly from the input
with values that were computed in the pre-processing stage.
The delay is increased by the configuration that has the highest
critical path like the adders which process more than two
inputs. The carry propagation function is given in (equation 3)
and carry generation function is given in (equation 4), where
Pi; Pi+1; Gi; Pi+1 and Gi+1 are the functions that were
already acquired in the pre-process stage.

Pi,i+1 = Pi · Pi+1 (3)

G = (Gi · Pi+1) +Gi+1 (4)

In the post-processing stage, the carry values that compose
the output, are grouped. They are reached through the last



adder configuration that is arranged by a solution that solves
the problem of the correct carry propagation for each input bit.
The final sum configuration is structured by an XOR function
that captures the values coming from the final disposition of
the carry. The function is shown in (equation 5), where P is the
propagate function and C is the last carry signal that receives
the values of the hierarchical structure of each adder.

Si+1 = Pi+1 ⊕ Ci (5)

The decision to evaluate different adders in the sum tree
of the square multipliers is because the choice of the most
accurate precise adder can improve the power-performance
relationship in such architectures.

In the parallel prefix adders, the carries are all calculated
in parallel. The type of PPA adder depends on the way of
organizing the tree of generating and propagating operators.
Table I shows the parameters of the area and delay for the
PPA adders mentioned above, according to the number of bits
(n).

TABLE I. DELAY AND AREA OF n-BIT WIDTH PPAS
Adder Delay Area
Brent-Kung 2 log2(n)− 2 2n− 2− log2(n)
Kogge-Stone log2(n) n log2(n)− (n− 1)
Han-Carlson log2(n) + 1 n

2
log2(n)

Ladner-Fischer 2 log2(n)− 1 2n− 2− log2(n)
Sklansky log2(n)

n
2
log2(n)

The sum tree of the Brent Kung adder [3] computes
prefixes for 2-bit groups and is used to find prefixes for 4-
bit groups, which are used to find prefixes for 8-bit groups
and so on. forward, until we describe the sum tree with the
amount of bits we want. We need to store the computation
from the prefix computation, since these must be available to
calculate the final carry. The fanout is limited to two cells per
logical stage.

The Sklansky adder also called the divide adder to conquer
[7] reduces the delay of the calculation of the intermediate pre-
fixes, however this occurs at the cost of a fanout that doubles
at each level. These high fanouts cause low performance of
this adding cell.

The Kogge Stone advisor [4] is an optimal mix between
efficiency and fanout, but the tree contains more spread prop-
agation and carry cells, although this may not impact the area
if the adder layout is in a regular grid, but this will increase
energy consumption.

The Han Carlson adder [5] is a hybrid compound between
Kogge Stone and Brent Kung adders. To get an optimal mix
between power, power dissipation, fanout, and area, however
in terms of acceleration it still loses to the Kogge Stone as we
can analyze in [11].

The Ladner Fischer adder [6] has a regularity between
the terms of Sklansky and Brent Kung adders, although its
architecture is very similar to that proposed by [7], this adder
calculates the prefix for odd numbers and uses one more stage
to curl even positions.

IV. RESULTS

The multiplier architectures were described in VHDL HDL
(Hardware Description Language) and synthesized using Ca-
dence GenusTM Synthesis tool with varying frequency targets

– according to the input bit-width – using the low-power ST
65nm commercial standard cell library with a 1.0V supply
voltage. The synthesis for the 8-bit circuit versions had a
operating frequency target of 200 MHz, whereas the 16-bit
versions had a 100 MHz target.

As we can analyze in table II the power results follow the
expected 8-bit quadratic multiplier that obtained better power
dissipation with the use of the PW Skansky adder, this is due
to the fact that for 8-bit results the PPAs are not at their full
regularity and demonstrating their full functionality. In 16-bit
multipliers, PPA adders already demonstrate better functional-
ity and distribution of carry propagation and generation cells.
Thus, as we analyzed in [11] the adder that obtained the best
result in power dissipation was the PPA Kogge Stone adder,
due to the regularity in the formation of its prefix computation.

In table III, we have the estimation of the area results where
again we have the best quadratic multiplier area result in 8-
bit module with the use of the Sklansky PPA adder. However,
the reliability of the results is denoted by the integrity of the
prefix computation of the adders that the larger the number of
analyzed bits, the greater the layout of the carry generation and
propagation cells. According to [4], the multiplier that obtained
the best area was the one using the PPA Kogge Stone adder,
still according to [4] although the Kogge Stone tree contains
more propagation cells, and carry generation, this may not
impact area results if the adder layout is in a regular grid,
however this will increase power consumption. This statement
can be reinforced by analyzing the results of [11], where for
the Kogge Stone adder to gain in area we had an increase of
7.4% in energy consumption.

V. CONCLUSIONS

In the squared multiplier we obtained a reduction of
62.5% of the total hardware used, where when we analyzed
a quadratic multiplier of 4 bits we were able to reduce the
logic to six units of the partial products, that before the
reduction showed results for sixteen partial products, which
are acquired by multiplying coefficients. This reduction was
obtained by analyzing a general purpose multiplier and the
optimized quadratic multiplier structure.

The work still in progress, but which has already provided
us with a relative improvement is the cubic multipliers where
we were able to reduce by 50% the partial products and 67%
the number of coefficients to be added, this architecture as
well as the quadratic architecture to be used in the generators
of harmonics need to be highly verified, so still new versions
of squared and cubic multipliers will be discussed, as well
as, the greater approach will be in the exploration of efficient
adders in the sum tree of the multipliers, in order to obtain
low-power results.

REFERENCES
[1] J. Lai, “Hardware Implementation of the Logarithm Function - using

Improved Parabolic Synthesis,” in Department of Electrical and Infor-
mation Technology, Faculty of Engineering, LTH, Master of Science
Thesis, 2013.

[2] A. Shaik, “Hardware Implementation of the Exponential Function Using
Taylor Series and Linear Interpolation,” in Department of Electrical
and Information Technology, Faculty of Engineering, LTH, Master of
Science Thesis, 2014.

[3] R. Brent and H. Kung, “A regular Layout for Parallel Adders,” IEEE
Trans. Computer, 1982.



TABLE II. TOTAL POWER DISSIPATION SYNTHESIS RESULTS.
Circuit Version Power Dissipation (µW) Total Power Variation (%)

8-bit @ 200MHz Leakage Dynamic Total Brent-Kung Han-Carlson Kogge-Stone Ladner-Fischer Sklansky
Brent-Kung 0.5 318.9 319.5 - 4.2 3.8 3.7 4.3
Han-Carlson 0.5 306.2 306.7 -4.0 - -0.3 -0.4 0.1
Kogge-Stone 0.5 307.1 307.6 -3.7 0.3 - -0.1 0.5
Ladner-Fischer 0.5 307.5 308.0 -3.6 0.4 0.1 - 0.6
Sklansky 0.4 305.7 306.2 -4.2 -0.1 -0.5 -0.6 -

Circuit Version Power Dissipation (µW) Total Power Variation (%)
16-bit @ 100MHz Leakage Dynamic Total Brent-Kung Han-Carlson Kogge-Stone Ladner-Fischer Sklansky
Brent-Kung 1.6 270.2 271.8 - -0.4 3.2 1.5 1.8
Han-Carlson 1.6 271.3 272.9 0.4 - 3.6 1.9 2.2
Kogge-Stone 1.5 261.8 263.4 -3.1 -3.5 - -1.6 -1.3
Ladner-Fischer 1.6 266.1 267.8 -1.5 -1.9 1.7 - 0.3
Sklansky 1.6 265.3 266.9 -1.8 -2.2 1.3 -0.3 -

TABLE III. CIRCUIT AREA, CRITICAL PATH DELAY, AND MAXIMUM FREQUENCY SYNTHESIS RESULTS.
Circuit Version Gate Count Cell Area Area Variation (%) C-Path Delay Max. Frequency

8-bit @ 200MHz (kgates) (µm2) Brent-Kung Han-Carlson Kogge-Stone Ladner-Fischer Sklansky (ps) (MHz)
Brent-Kung 160 723.3 - 10.5 10.4 9.7 11.7 4999.2 200.0
Han-Carlson 132 654.7 -9.5 - -0.1 -0.7 1.1 4999.0 200.0
Kogge-Stone 131 655.2 -9.4 0.1 - -0.6 1.2 4993.8 200.2
Ladner-Fischer 134 659.4 -8.8 0.7 0.6 - 1.8 4992.0 200.3
Sklansky 129 647.4 -10.5 -1.1 -1.2 -1.8 - 4982.4 200.7

Circuit Version Gate Count Cell Area Area Variation (%) C-Path Delay Max. Frequency
16-bit @ 100MHz (kgates) (µm2) Brent-Kung Han-Carlson Kogge-Stone Ladner-Fischer Sklansky (ps) (MHz)
Brent-Kung 509 2301.5 - -1.8 1.2 0.1 0.7 9995.3 100.0
Han-Carlson 519 2344.1 1.9 - 3.1 2.0 2.5 9999.9 100.0
Kogge-Stone 474 2273.4 -1.2 -3.0 - -1.1 -0.5 9998.3 100.0
Ladner-Fischer 502 2298.9 -0.1 -1.9 1.1 - 0.6 9996.7 100.0
Sklansky 501 2285.9 -0.7 -2.5 0.5 -0.6 - 9999.8 100.0

[4] P. M. Kogge and H. S. Stone, “Parallel Algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Transactions
on Computers, 1973.

[5] M. Han, “Approximate computing: An emerging paradigma for energy-
efficient design,” 18th IEEE European Test Symposium (ETS), 2013.

[6] R. Ladner and M. Fischer, “Parallel Prefix Computation,” Journal of
the ACM, 1980.

[7] J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on
Electronic Computers, 1960.

[8] A. B. Sassi and J. N. S. Junior, “Projeto de uma ULA de inteiros e de
baixo consumo em tecnologia CMOS,” Dissertao apresentada escola
de Engenharia de So Carlos da Universidade de So Paulo como parte
dos requisitos para obteno do ttulo de mestre em ciłncias, Programa
de Engenharia Eltrica, 2013.

[9] N. Weste and D. M. Harris, “CMOS VLSI Design a circuits and system
perspective,” fourth edition, Pearson, 2011.

[10] A. Beaumont-Smith and C.-C. Lim, “Parallel prefix adder design,” in
IEEE Symposium on Computer Arithmetic, 2001, pp. 218–225.

[11] M. da Rosa, B. Silveira, L. Soares, C. Diniz, and E. Costa, “Exploriting
the Use of Parallel Prefix Adder Topologies into Aproximate Adder
Circuits,” 24th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), 2017.


